Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Anesthesia and Pain Medicine ; : 371-377, 2020.
Article | WPRIM | ID: wpr-830313

ABSTRACT

Background@#The performance of the pulse oximeter was evaluated based on the ISO 80601-2-61:2011 (E) guidelines. This study aimed to determine whether the various finger probes of the MP570T pulse oximeter (MEK-ICS Co., Ltd., Korea) would provide clinically reliable peripheral oxygen saturation (SpO2) readings over a range of 70100% arterial oxygen saturation (SaO2) during non-motion conditions. @*Methods@#Each volunteer (n = 12) was connected to a breathing circuit for the administration of a hypoxic gas mixture. For frequent blood sampling, an arterial cannula was placed in a radial artery. The following seven pulse oximeter probes were simultaneously attached to each volunteer’s fingers: (1) WA-100 reusable finger probe (MEDNIS Co., Ltd., Korea), (2) MDNA disposable finger probe (MEDNIS Co., Ltd.), (3) IS-1011 disposable finger probe (Insung Medical Co., Ltd., Korea), (4) CJ340NA disposable finger probe (CHUN JI IN Medical Co., Ltd., Korea), (5) NellcorTM OxiMax DS-100A reusable finger probe (Medtronic, USA), (6) NellcorTM OxiMax MAX-N disposable finger probe (Medtronic), and (7) OXI-PRO DA disposable finger probe (Bio-Protech Inc., Korea). @*Results@#A total of 275 SpO2-SaO2 pairs were included in the analysis. The accuracy of the root mean square (Arms) of each probe was 2.83%, 3.98%, 3.75%, 6.84%, 3.43%, 5.17%, and 3.84%, respectively. @*Conclusions@#The MP570T pulse oximeter with WA-100 reusable, MDNA disposable, IS-1011 disposable, NellcorTM OxiMax DS-100A reusable, and OXI-PRO DA disposable finger probes meets an acceptable standard of SpO2 accuracy under non-motion conditions.

2.
Anesthesia and Pain Medicine ; : 407-411, 2019.
Article in English | WPRIM | ID: wpr-785369

ABSTRACT

BACKGROUND: Inaccuracies associated with target-controlled infusion (TCI) delivery systems are attributable to both software and hardware issues, as well as pharmacokinetic variability. However, little is known about the inaccuracy of the syringe pump operating in TCI mode. This study aimed to evaluate the accuracy of the TCI pump based on international standards.METHODS: A test apparatus for accuracy evaluation of a syringe pump (PION TCI®, Bionet Co. Ltd.) was designed to apply the gravimetric method. Pump accuracy was evaluated in terms of deviation defined by the following equation: infusion rate deviation (%) = (Rate(mea) − Rate(est)) / Rate(est) × 100, where Rate(mea) is the infusion rate (ml/h) as measured by the gravimetric system, and Rate(est) is the infusion rate (ml/h) as estimated by the pump. An infusion rate representing TCI mode was determined from previous clinical trial data which evaluated the predictive performance of the pharmacokinetic model. The PION TCI pump used in that clinical trial was used to evaluate accuracy of the syringe pump. The distribution of infusion rates obtained from the clinical trial was calculated, and the median value of the distribution was determined as the representative value.RESULTS: The representative infusion rate representing TCI mode was 31 ml/h, at which the infusion rate deviation was 4.5 ± 1.6%.CONCLUSIONS: The inaccuracy of the syringe pump contributing to TCI system inaccuracy is insignificant.


Subject(s)
Mesons , Methods , Syringes
SELECTION OF CITATIONS
SEARCH DETAIL